Differantiation proof question exlanation problem

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Proof
transgalactic
Messages
1,386
Reaction score
0
if f(x) is differentiable on x_0
prove that
http://img102.imageshack.us/img102/3189/51290270sj1.th.gif

??

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

now let u = x+h \Rightarrow x = u-h

So f'(u-h) = \lim_{h \to 0} \frac{f(u-h+h)-f(u-h)}{h} = \lim_{h \to 0} \frac{f(u)-f(u-h)}{h}

Since h \to 0, f'(u-h) \to f'(u)

Therefore f'(x) = \lim_{h \to 0} \frac{f(x)-f(x-h)}{h}

f'(x)+f'(x) = 2f'(x) = \lim_{h \to 0}\left( \frac{f(x+h)-f(x)}{h} + \frac{f(x)-f(x-h)}{h} \right)

2f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x-h)}{h}

Hence, f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x-h)}{2h}


i understand this solution but
how to pick those variables??
and why it didnt use the point x_0
that they presented
 
Last edited by a moderator:
Physics news on Phys.org
there is another definition to limit that uses x_0 that i was given
<br /> f&#039;(x) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}<br />

is there a way to use this definition like you did before
what variables to pick so it will go on the "h" defnition??
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top