Differential equation dx/x(z-2y^2) = dy/y(z-y^2-2x^3) = dz/z(z-y^2-2x^3)

abrowaqas
Messages
113
Reaction score
0

Homework Statement



Solve
dx/x(z-2y^2) = dy/y(z-y^2-2x^3) = dz/z(z-y^2-2x^3)



Homework Equations





The Attempt at a Solution


i got one solution by taking

dy/y(z-y^2-2x^3) = dz/z(z-y^2-2x^3)

dy/y= dz/z
integ: to bothsides

ln y = ln z + ln c
ln y = ln (zc)
y=zc

y/z= c

now i am looking for next solution kindly help.
 
Physics news on Phys.org
Now, you can replace y by cz in
\frac{dx}{x(z-2y^2)}= \frac{dz}{z(z- y^2- 2x^3)}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top