Differential Equation/Intial Value Problem

  • Thread starter Thread starter tracedinair
  • Start date Start date
  • Tags Tags
    Differential Value
tracedinair
Messages
47
Reaction score
0

Homework Statement



Solve the following initial value problem,

y' = (x-y)/(x+y), y(1) = 1

Homework Equations




The Attempt at a Solution



dy/dx = (x-y)/(x+y)

dy/dx * (x+y) = x-y

(x+y)dy = (x-y)dx

∫(x+y)dy = ∫(x-y)dx

xy + y^(2)/2 = x^(2)/2 - xy + C

2xy + y^2 = x^2 - 2xy + C

y^2 + 4xy - x^2 = C

Sub in x=1, y=1

1 + 4 - 1 = C = 4

Soln: 2xy + y^2 = x^2 - 2xy + 4
 
Physics news on Phys.org
N/m, I just realized this is a homogeneous diffeq. Sorry.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top