redtree
- 335
- 15
This is not a homework question, but I am posting here so as not to run afoul of the "rules."
(1/z) * dz/dx = a* \sqrt{dy/dx}
where x,y,z are variables and a is a constant.
See above
\left[ (1/z) * dz/dx = a*\sqrt{dy/dx} \right] *dx<br /> <br /> Thus,<br /> dz/z = a* \sqrt{dy * dx} <br /> <br /> \int dz/z = \int a* \sqrt{dy * dx}<br /> <br /> ln(z) = \int a \sqrt{dy * dx} <br /> <br /> ??
Homework Statement
(1/z) * dz/dx = a* \sqrt{dy/dx}
where x,y,z are variables and a is a constant.
Homework Equations
See above
The Attempt at a Solution
\left[ (1/z) * dz/dx = a*\sqrt{dy/dx} \right] *dx<br /> <br /> Thus,<br /> dz/z = a* \sqrt{dy * dx} <br /> <br /> \int dz/z = \int a* \sqrt{dy * dx}<br /> <br /> ln(z) = \int a \sqrt{dy * dx} <br /> <br /> ??