DivGradCurl
- 364
- 0
Here's the initial-value problem I'm trying to solve:
\sin (2x) \: dx + \cos (3y) \: dy = 0 \qquad y \left( \frac{\pi}{2} \right) = \frac{\pi}{3}
I can't see exactly where my mistake is, but I do know that my answer is not correct. My textbook gives:
y=\frac{1}{3} \left[ \pi - \arcsin \left( 3 \cos ^2 x \right) \right]\mbox{.}
Here's what I've done:
\sin (2x) \: dx + \cos (3y) \: dy = 0
\sin (2x) \: dx = - \cos (3y) \: dy
\int \sin (2x) \: dx = - \int \cos (3y) \: dy
-\frac{1}{2} \cos (2x) = -\cos (y) \sin (y) + \mathrm{C}
\cos (2x) = 2\cos (y) \sin (y) + \mathrm{C}
Applying the initial condition at this point gives:
\mathrm{C} = -\frac{\sqrt{3}}{2} - 1
Thus, we have the following.
\cos (2x) = 2\cos (y) \sin (y) -\frac{\sqrt{3}}{2} - 1
\cos (2x) = \sin (2y) -\frac{\sqrt{3}}{2} - 1
\sin (2y) = \cos (2x) +\frac{\sqrt{3}}{2} + 1
\sin (2y) = 2\cos ^2 (x) - 1 +\frac{\sqrt{3}}{2} + 1
\sin (2y) = 2\cos ^2 (x) +\frac{\sqrt{3}}{2}
y = \frac{1}{2} \arcsin \left[ 2\cos ^2 (x) +\frac{\sqrt{3}}{2} \right]
As you can see, I don't get the same answer.
Any help is highly appreciated.
\sin (2x) \: dx + \cos (3y) \: dy = 0 \qquad y \left( \frac{\pi}{2} \right) = \frac{\pi}{3}
I can't see exactly where my mistake is, but I do know that my answer is not correct. My textbook gives:
y=\frac{1}{3} \left[ \pi - \arcsin \left( 3 \cos ^2 x \right) \right]\mbox{.}
Here's what I've done:
\sin (2x) \: dx + \cos (3y) \: dy = 0
\sin (2x) \: dx = - \cos (3y) \: dy
\int \sin (2x) \: dx = - \int \cos (3y) \: dy
-\frac{1}{2} \cos (2x) = -\cos (y) \sin (y) + \mathrm{C}
\cos (2x) = 2\cos (y) \sin (y) + \mathrm{C}
Applying the initial condition at this point gives:
\mathrm{C} = -\frac{\sqrt{3}}{2} - 1
Thus, we have the following.
\cos (2x) = 2\cos (y) \sin (y) -\frac{\sqrt{3}}{2} - 1
\cos (2x) = \sin (2y) -\frac{\sqrt{3}}{2} - 1
\sin (2y) = \cos (2x) +\frac{\sqrt{3}}{2} + 1
\sin (2y) = 2\cos ^2 (x) - 1 +\frac{\sqrt{3}}{2} + 1
\sin (2y) = 2\cos ^2 (x) +\frac{\sqrt{3}}{2}
y = \frac{1}{2} \arcsin \left[ 2\cos ^2 (x) +\frac{\sqrt{3}}{2} \right]
As you can see, I don't get the same answer.
Any help is highly appreciated.