PFStudent
- 169
- 0
Homework Statement
Ok, I am evaluating the following integral,
<br /> {{\int_{0}^{\infty}}{\frac{{R_{0}}ds}{\left({{s}^{2}+{R_{0}}^{2}\right)^{\frac{3}{2}}}}}<br />
Following through with trigonometric substitution I have the following,
<br /> {\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{s}{(s^2+{R_{0}}^2)^{\frac{1}{2}}}}\right]_{0}^{\infty}}}<br />
However, I am not quite sure what the result will be when I evaluate the integral.
Homework Equations
Trigonometric Substitution Techniques for evaluating Integrals.
The Attempt at a Solution
<br /> {\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(\infty)}{({(\infty)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]-{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(0)}{({(0)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]<br />
<br /> {\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(\infty)}{({(\infty)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]-{\left[0\right]}\right]<br />
However, how I am supposed to reduce the expression with the value of infinity plugged in, how would I reduce that expression?
Any help is appreciated.
Thanks,
-PFStudent
Last edited: