Dimension & Linear Maps: Does U=V?

  • Thread starter Thread starter FunkyDwarf
  • Start date Start date
  • Tags Tags
    Dimension Linear
FunkyDwarf
Messages
481
Reaction score
0
Hey guys,

Does dimension remain unchanged under a linear map? Ie if i have a map f:U->V does dim(U) = dim(img(f))?

Cheers
-Z
 
Physics news on Phys.org
Not necessarily.
 
For a trivial example, take the zero map on a space of positive dimension.

Something that might be of interest to you is the rank-nullity theorem.
 
Yeh i kinda figured it didnt hold. Actually i was going to use it to prove the RL theorem if it was true

cheers
Z
 
If L is linear, L(U) cannot have dimension higher than U. It can have dimension lower than U. Of course, to do that, L must map many vectors to the 0 vector: its kernel is not empty. The "nullity-rank" theorem morphism mentioned says that the dimension of L(U) plus the dimension of the kernel of U is equal to the dimension of U.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top