Dimensional analysis for arcsine integral

HotMintea
Messages
42
Reaction score
0
1. The problem statement

Use dimensional analysis to find \int\sqrt{\ a\ - \ b\ x^2\ }\ dx.

A useful result is \int\sqrt{\ 1\ - \ x^2\ }\ dx\ = \frac{arcsin{x}}{2}\ + \frac{x\sqrt{\ 1\ - \ x^2\ }}{2}\ + \ C.

2. The attempt at a solution

If I let <b> = L^2 </b> and [x] = M, then [a] = L^2 M^2 and [\int\sqrt{\ a\ - \ b\ x^2\ }\ dx]\ = LM^2.

Hence, my answer was:

<br /> \begin{equation*} <br /> \begin{split} <br /> \int\sqrt{\ a\ - \ b\ x^2\ }\ dx\ = \frac{a}{\sqrt{b}}\frac{arcsin{\frac{\sqrt{b}\ x}{\sqrt{a}}}}{2}\ + \frac{x\sqrt{\ a\ - \ b\ x^2\ }}{2}\ + \ C.<br /> \end{split} <br /> \end{equation*}<br />

However, the correct answer (by Wolfram Alpha) was:

<br /> \begin{equation*} <br /> \begin{split} <br /> \int\sqrt{\ a\ - \ b\ x^2\ }\ dx\ = \frac{a}{\sqrt{b}}\frac{arctan{\frac{\sqrt{b}\ x}{\sqrt{a\ - \ bx^2\ }}}}{2}\ + \frac{x\sqrt{\ a\ - \ b\ x^2\ }}{2}\ + \ C.<br /> \end{split} <br /> \end{equation*}<br />
( http://www.wolframalpha.com/input/?i=int+sqrt%28a-bx^2%29dx [/URL])

I wonder why [itex] \int\sqrt{\ a\ - \ b\ x^2\ }\ dx\ [/itex] will not be the same as [itex] \int\sqrt{\ 1\ - \ x^2\ }\ dx\ [/itex] when a = b = 1. Moreover, I would like to know how to find [itex] arctan{\frac{\sqrt{b}\ x}{\sqrt{a\ - \ bx^2\ }}} [/itex] part by dimensional analysis or similar method without doing the full integral.
 
Last edited by a moderator:
Physics news on Phys.org
They're two different ways of writing the same thing. If opposite/hypotenuse for a certain angle is √b*x over √a, opposite/adjacent would be √b*x over √(a-bx^2).
 
ideasrule said:
They're two different ways of writing the same thing. If opposite/hypotenuse for a certain angle is √b*x over √a, opposite/adjacent would be √b*x over √(a-bx^2).

That is true! Thanks for your help! :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top