Dimensionless value to differentiate between concentrated and dispersed

independentphysics
Messages
26
Reaction score
2
Homework Statement
Find a dimensionless value to differentiate between concentrated and dispersed mass systems
Relevant Equations
Newtonian mechanics
I want to find a dimensionless value that differentiates between concentrated mass systems such as the solar system and dispersed mass systems such as a galaxy. I assume spherical and radial symmetry, consider both the cases for point masses or smooth mass distributions.

The only value I can think of is the sum of multiplying each mass by its distance, but then I have to normalize this by some mass*distance to make it dimensionless.

Is there any other alternative?
 
Physics news on Phys.org
For what purpose? It is hard to define such a thing without knowing what it will be used for.
For example: in the absense of elaboration, I offer the following:
1 for localized objects such as stars, and 0 for diffuse objects such as gas clouds.
Fractional values can serve for in-between states, such as rock piles.
 
DaveC426913 said:
For what purpose? It is hard to define such a thing without knowing what it will be used for.
For example: in the absense of elaboration, I offer the following:
1 for localized objects such as stars, and 0 for diffuse objects such as gas clouds.
Fractional values can serve for in-between states, such as rock piles.
Hi Dave,

I need a dimensionless value based of physical parameters to differentiate between concentrated mass systems such as the solar system and dispersed mass systems such as a galaxy.

I do not understand your proposal. Although it is a dimensionless value, how can it be derived from physical parameters?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top