Understanding Diode Barrier Potential and Its Role in PN Junction Diodes

AI Thread Summary
The barrier potential in a PN junction diode is often equated with the 'forward voltage' listed in datasheets, as it represents the voltage needed for conduction. When the applied voltage exceeds this barrier potential under forward bias, the diode begins to conduct. The conduction behavior of a diode is not a simple threshold but follows a continuous exponential function, as described by the Shockley equation. This means that while there is a forward voltage, the relationship between current and voltage is smooth and exponential until ohmic effects take over at higher currents. Understanding these characteristics is crucial for accurately interpreting diode behavior in electronic circuits.
Physicist3
Messages
103
Reaction score
0
Hi,

For a PN junction diode, am I correct in thinking that the barrier potential (due to depletion region and hole-electron recombination etc.) is the same as the 'forward voltage' quoted on datasheets? Also, when a forward bias condition is created and the applied voltage is greater than the barrier potential, am I correct in thinking that the diode will then conduct?
 
Engineering news on Phys.org
You've pretty much got it.
 
One thing people don't seem to get is that the conduction of a diode is a continuous exponential function.

From the wikipedia article:
"The diode is commonly said to have a forward "threshold" voltage, which it conducts above and is cutoff below. However, this is only an approximation as the forward characteristic is according to the Shockley equation absolutely smooth".

The flow is exponential relative to the barrier voltage until it is dominated by ohmic effects at higher currents.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top