jackychenp
- 26
- 0
From dirac, if A=B, then \frac{A}{x}=\frac{B}{x}+c\delta(x) (1) How this formula is derived?
Since \frac{dlnx}{dx} = \frac{1}{x}-i\pi\delta(x)
We can get \frac{A}{x} = A\frac{dlnx}{dx}+Ai\pi\delta(x)
\frac{B}{x} = B\frac{dlnx}{dx}+Bi\pi\delta(x)
So if A=B, \frac{A}{x}=\frac{B}{x}.
Another argument is if we integrate the equation (1) from -a to a, a->\infty and assume in a small region [-\varepsilon, \varepsilon ], \int_{-\varepsilon}^{\varepsilon}\frac{1}{x}dx=0, so we can get \int_{-a}^{a}\frac{1}{x}dx=0, but \int_{-a}^{a}c\delta(x)dx=c, so the left side of equation (1) doesn't equal to the right side. Please correct me if I am wrong!
Since \frac{dlnx}{dx} = \frac{1}{x}-i\pi\delta(x)
We can get \frac{A}{x} = A\frac{dlnx}{dx}+Ai\pi\delta(x)
\frac{B}{x} = B\frac{dlnx}{dx}+Bi\pi\delta(x)
So if A=B, \frac{A}{x}=\frac{B}{x}.
Another argument is if we integrate the equation (1) from -a to a, a->\infty and assume in a small region [-\varepsilon, \varepsilon ], \int_{-\varepsilon}^{\varepsilon}\frac{1}{x}dx=0, so we can get \int_{-a}^{a}\frac{1}{x}dx=0, but \int_{-a}^{a}c\delta(x)dx=c, so the left side of equation (1) doesn't equal to the right side. Please correct me if I am wrong!