Orad
- 4
- 0
Given:
f(x)=\delta(x-a)
Other than the standard definitions where f(x) equals zero everywhere except at a, where it's infinity, and that:
\int_{-\infty}^{\infty} g(x)\delta(x-a)\,dx=g(a)
Is there some kind of other definition involving exponentials, like:
\int e^{ix(k'-k)}d^3x=\delta^3(k'-k)
I remember learning something about this, but can't find a proof of it in any textbook or online at the moment, and I don't trust my memory enough to know if this is precise. Any thoughts?
f(x)=\delta(x-a)
Other than the standard definitions where f(x) equals zero everywhere except at a, where it's infinity, and that:
\int_{-\infty}^{\infty} g(x)\delta(x-a)\,dx=g(a)
Is there some kind of other definition involving exponentials, like:
\int e^{ix(k'-k)}d^3x=\delta^3(k'-k)
I remember learning something about this, but can't find a proof of it in any textbook or online at the moment, and I don't trust my memory enough to know if this is precise. Any thoughts?