- #1

- 61

- 0

## Main Question or Discussion Point

How fast does the computational complexity of the Dirac equation, with regards to full* solution, grow with number of particles N? can we specify the order of time t(N) for this solution in terms of t(N=1)?

(I assume that number of protons, neutrons and electrons combined is N - i.e. that complexity grows similarly with particles of every kind.)

*Full solution meaning a numerical solution reached without making any approximations or neglecting any terms (beyond those neglected even for cases we can solve "exactly" like that of a hydrogen atom)

(I assume that number of protons, neutrons and electrons combined is N - i.e. that complexity grows similarly with particles of every kind.)

*Full solution meaning a numerical solution reached without making any approximations or neglecting any terms (beyond those neglected even for cases we can solve "exactly" like that of a hydrogen atom)