phsopher
- 180
- 4
This is probably a stupid question, but when I apply the Euler-Lagrange equation to the Lagrangian density of the Dirac field I get for the conjugate field
\bar{\psi} (-i \partial_\mu \gamma^{\mu} -m) = 0 (derivative acts to the left).
But when I take a hermitian conjugate of the Dirac equation for the field I get an extra \gamma^0:
0 = \left[ (i \partial_\mu \gamma^{\mu} -m)\psi \right]^\dagger = \psi^\dagger (-i \partial_\mu (\gamma^{\mu})^\dagger -m) = \psi^\dagger (-i \partial_\mu \gamma^0 \gamma^{\mu} \gamma^0 -m) = \psi^\dagger \gamma^0(-i \partial_\mu \gamma^{\mu} \gamma^0 -m) = \bar{\psi} (-i \partial_\mu \gamma^{\mu} \gamma^0 -m).
What am I missing?
\bar{\psi} (-i \partial_\mu \gamma^{\mu} -m) = 0 (derivative acts to the left).
But when I take a hermitian conjugate of the Dirac equation for the field I get an extra \gamma^0:
0 = \left[ (i \partial_\mu \gamma^{\mu} -m)\psi \right]^\dagger = \psi^\dagger (-i \partial_\mu (\gamma^{\mu})^\dagger -m) = \psi^\dagger (-i \partial_\mu \gamma^0 \gamma^{\mu} \gamma^0 -m) = \psi^\dagger \gamma^0(-i \partial_\mu \gamma^{\mu} \gamma^0 -m) = \bar{\psi} (-i \partial_\mu \gamma^{\mu} \gamma^0 -m).
What am I missing?