I Dirac Notation: Bra & Ket Conjugation Rules

Somali_Physicist
Messages
117
Reaction score
13
hey guys just a quick question , within the Dirac notation I we have bras and kets.Is it allowable to simply hermitianly conjugate everything , e.g:

<w|c> = <b|c> - <d|c>
Can we then:
<c|w> = <c|b> -<c|d>

Or is there some subtly hidden rule.
 
Physics news on Phys.org
Try expanding (<w|c> = <b|c> - <d|c>)*
 
Somali_Physicist said:
hey guys just a quick question , within the Dirac notation I we have bras and kets.Is it allowable to simply hermitianly conjugate everything , e.g:

<w|c> = <b|c> - <d|c>
Can we then:
<c|w> = <c|b> -<c|d>

Or is there some subtly hidden rule.

The quantity ##\langle w | c \rangle## is just a complex number, and it has the property that ##(\langle w | c \rangle^* = \langle c | w \rangle ##. So it's perfectly fine to apply the ##^*## operation to both sides of an equality.
 
stevendaryl said:
The quantity ##\langle w | c \rangle## is just a complex number, and it has the property that ##(\langle w | c \rangle^* = \langle c | w \rangle ##. So it's perfectly fine to apply the ##^*## operation to both sides of an equality.
Okay well that leads to my real conundrum:

<w|c><c|w> = α = P
conjugation of both sides
(<w|c><c|w>)* = α* = P*
<c|w><w|c> =α*
<c|w><w|c><w|c><c|w> = α2
=(<w|c><c|w>)2 = <w|c><c|w><w|c><c|w>

but does not this imply

<c|w><w|c> = <w|c><c|w> which means <w|c><c|w> real?

i don't understand why that would be the case as the operator P should act differently when conjugated.
 
Last edited:
yes the number alpha is real
what is the définition of your operator P?
 
Somali_Physicist said:
Okay well that leads to my real conundrum:

but does not this imply

<c|w><w|c> = <w|c><c|w> which means <w|c><c|w> real?

Yes, <c|w><w|c> = |<c|w>|^2 is a real number.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
9
Views
2K
Replies
1
Views
1K
Replies
7
Views
1K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
2
Views
1K
Back
Top