MHB What is the integral representation of the Digamma function?

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral representation of the Digamma function is derived from the Gamma function, expressed as $$\psi_0(x) = \frac{d}{dx}\log \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$. Dirichlet's integral representation for the Digamma function is given by $$\psi_0(x) = \int_0^{\infty} \frac{1}{z}\left( e^{-z} - \frac{1}{(1+z)^x} \right)\, dz$$. The discussion includes a light-hearted exchange about the speed of proving the representation, with participants joking about the time it takes to respond. Overall, the focus remains on the mathematical derivation and properties of the Digamma function. The conversation highlights both the complexity and the humor in engaging with advanced mathematical concepts.
DreamWeaver
Messages
297
Reaction score
0
For the Gamma function:

$$\Gamma(x) = \int_0^{\infty}t^{x-1}e^{-t}\, dt$$And the Digamma function:

$$\psi_0(x) = \frac{d}{dx}\log \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$Prove Dirichlet's integral representation for the Digamma function:$$\psi_0(x) = \int_0^{\infty} \frac{1}{z}\left( e^{-z} - \frac{1}{(1+z)^x} \right)\, dz$$Hint:

Evaluate the double integral

$$\int_{0}^{\infty}\int_{1}^{q}e^{-tz}\, dt\, dz$$

in two different ways, and equate the results.
 
Mathematics news on Phys.org
Consider

$$f(t) = \int^\infty_0 z^{t-1}\left(e^{-z}-\frac{1}{(1+z)^x} \right)dz = \Gamma(t)-\frac{ \Gamma(t) \Gamma(x-t)}{ \Gamma(x)}$$

$$f(t)= \frac{\Gamma(1+t)}{\Gamma(x)}\frac{ \Gamma(x) -\Gamma(x-t)}{t}$$

Now take the limit as $t\to 0$

$$ \frac{1}{\Gamma(x)}\lim_{t \to 0}\frac{ \Gamma(x) -\Gamma(x-t)}{t}= \frac{\Gamma'(x)}{\Gamma(x)}=\psi(x)$$
 
ZaidAlyafey said:
Consider

$$f(t) = \int^\infty_0 z^{t-1}\left(e^{-z}-\frac{1}{(1+z)^x} \right)dz = \Gamma(t)-\frac{ \Gamma(t) \Gamma(x-t)}{ \Gamma(x)}$$

$$f(t)= \frac{\Gamma(1+t)}{\Gamma(x)}\frac{ \Gamma(x) -\Gamma(x-t)}{t}$$

Now take the limit as $t\to 0$

$$ \frac{1}{\Gamma(x)}\lim_{t \to 0}\frac{ \Gamma(x) -\Gamma(x-t)}{t}= \frac{\Gamma'(x)}{\Gamma(x)}=\psi(x)$$
Crikey! That was a very quick proof... Very impressive! (Rock)(Rock)(Rock)
 
Not that quick. Especially if I had used my phone. Don't post lots of interesting questions for otherwise I'll spend the whole day typing... Just kiddin'
 
ZaidAlyafey said:
Not that quick. Especially if I had used my phone. Don't post lots of interesting questions for otherwise I'll spend the whole day typing... Just kiddin'

He he! Just for that, I'm going to post more, not less... (Hug)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top