Is there a real-valued function which is discontinuous everywhere, but which has a limit at every point in it's domain?(adsbygoogle = window.adsbygoogle || []).push({});

My intuition is that this couldn't occur because, if the limit exists at some x, then it must become "increasingly continuous" in the vicinity of x (otherwise we could find sequences to that point with different limits under that function). Then, we could perhaps conclude that f must be continuous in some neighborhood of x. This is of course not a formal proof, though, and I haven't been able to formalize it, hence my curiosity.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Discontinuity and limits of functions

Loading...

Similar Threads for Discontinuity limits functions |
---|

I A rigorous definition of a limit and advanced calculus |

B Question about a limit definition |

I Looking for additional material about limits and distributions |

I A problematic limit to prove |

B Proof of a limit rule |

**Physics Forums | Science Articles, Homework Help, Discussion**