Discontinuity at certain points

rainwyz0706
Messages
34
Reaction score
0

Homework Statement



1.Find a function f : R → R which is discontinuous at the points of the set
{1/n : n a positive integer} ∪ {0} but is continuous everywhere else.
2. Find a function g : R → R which is discontinuous at the points of the set
{1/n : n a positive integer} but is continuous everywhere else.


Homework Equations





The Attempt at a Solution


I'm thinking of making f(x)=0 at points that f is discontinuous and f(x)=x everywhere else. But that only works for 2, not 1, right? Could anyone give me some hints? I'm not sure what the question is asking for. Thanks!
 
Physics news on Phys.org
Why not just f(x)= 1 if x= 1/n for some positive integer n or x= 0, 0 otherwise?
 
only discontinuous..?
try, f(x) =[1/x]...where...[y] is the greatest integer less than or equal to y or as you would call, floor(y)...f(1/n) leads to a jump discontinuity one you can never fix, and hence an implied non-differentiability.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top