Discovering the Image of a Linear Map: Methods and Examples

Marin
Messages
192
Reaction score
0
Hi all!

Does anyone know a general method for determining the image of a lin map?

I´m aware of the definition if im, but how could I determine it. Maybe it would be useful to show this on some examples :)
 
Physics news on Phys.org
What exactly do you mean by "determining the image". Apply the linear map to each of the basis vectors of a the domain space gives you a set that spans the image. You can reduce that to get a basis for the image.

If you are looking at a matrix, you can "column reduce" the matrix and and the columns of the reduced matrix are a basis for the image. If you have only learned "row reduction", swap rows for columns (the "transpose") and row reduce. The rows of the reduced matrix form a basis for the image.
 
Most computational linear algebra questions are best approached by first formulating the question in terms of matrices.

e.g. HallsofIvy suggests to capture the notion of image somehow via the column space of an appropriate matrix.
 
a standard technique for proving the image is the whole codomain is to show the rank of the map equals the dimension of the codomain. e.g. if the domain and codomain have the same dimension, then it suffices to show the map is injective.
 
thanks to all of you!

I think it`s all getting somehow clearer to me :)

(sorry for the inexactly asked question, I started my linear algebra course about a month ago and I`m still getting used to the level of abstraction it requires)
 
In general it is not trivial to determine the image of a linear map especially in infinite dimensions. e.g. the main theorem of ordinary differential equations says certain linear differential operators acting on smooth functions, have as image the space of all smooth functions.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top