Discrete Random Variables - Mean and Standard Deviation

dyno0919
Messages
3
Reaction score
0

Homework Statement


There are a set number of marbles in a bag; the marbles consist of two colors. We are given the mean number of marbles of color 1 in the bag, as well as color 1's standard deviation. We are then asked to find the mean and standard deviation of color 2.

Homework Equations


How do we find the standard deviation of one variable given the standard deviation of another variable?

The Attempt at a Solution


I believe the mean of color 2 would just be (# of marbles in bag)-(mean # of color 1 marbles), but I may be wrong. We haven't learned anything about covariance, and after a sufficient amount of googling that seems like the only way to connect two variances (and thereby two standard deviations).

If we assign X=# of marbles of color 1 and Y=# of marbles of color 2, then it makes sense that E[X+Y]=E[X]+E[Y], or E[Y]=E[X+Y]-E[X]. But then, Var(X+Y) would be 0 because the number of marbles in the bag never changes? Then if Var(X+Y)=Var(X)+Var(Y), we end up with a negative variance for Y... It is at this point that I haven't got a clue how to proceed.
 
Physics news on Phys.org
dyno0919 said:

Homework Statement


There are a set number of marbles in a bag; the marbles consist of two colors. We are given the mean number of marbles of color 1 in the bag, as well as color 1's standard deviation. We are then asked to find the mean and standard deviation of color 2.


Homework Equations


How do we find the standard deviation of one variable given the standard deviation of another variable?


The Attempt at a Solution


I believe the mean of color 2 would just be (# of marbles in bag)-(mean # of color 1 marbles), but I may be wrong. We haven't learned anything about covariance, and after a sufficient amount of googling that seems like the only way to connect two variances (and thereby two standard deviations).

If we assign X=# of marbles of color 1 and Y=# of marbles of color 2, then it makes sense that E[X+Y]=E[X]+E[Y], or E[Y]=E[X+Y]-E[X]. But then, Var(X+Y) would be 0 because the number of marbles in the bag never changes? Then if Var(X+Y)=Var(X)+Var(Y), we end up with a negative variance for Y... It is at this point that I haven't got a clue how to proceed.

You cannot write Var(X+Y) = Var(X) + Var(Y) because X and Y are correlated. Instead, use the standard result that Var(Y) = E(Y^2) - (EY)^2, and re-express everything in terms of X.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top