I Discrete Random Vectors vs. Continuous Random Vectors

zr95
Messages
25
Reaction score
1
Given a continuous random vector (X,Y) with a joint density function
In order to check whether it is indeed a joint density ƒ(x,y) the method is to check if ∫∫ƒ(x,y)dxdy=1 where the integrals limits follow the bounds of x and y.

However, is it the case that if given an arbitrary discrete random vector (X,Y) with a joint density function:
In order to check whether it is indeed a joint density ƒ(x,y) the method is to check if ∑∑ƒ(x,y)=1 where the summations are, given bounds, for all those x and y.

Or are they both the ∫∫ f(x,y)dxdy=1? I know further on for finding the expectation and such that discrete uses the summation and continuous takes the integral but not sure if it differs in the first step or why it does.
 
Physics news on Phys.org
The sum can be looked at as an integral using delta functions. Is that what you are aiming for?
 
Technically the measure changes and the requirements for axiomatic probability are quite precise - and often difficult to follow.

If you are interested in this then you can find it in a graduate (or "pure") probability course that involves measure theory, sigma algebras, and the use of set theory to make probability rigorous over a variety of spaces (which as it turns out - is quite difficult).

A course on financial calculus (as a graduate offering) will cover this in one form or another.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top