Discussing the Convergence of a Series: Get My Opinion!

Amaelle
Messages
309
Reaction score
54
Homework Statement
studying the convergence of a serie (look at the image)
Relevant Equations
geometric serie, convergence
Good day
I want to study the connvergence of this serie

1612182366542.png

I already have the solution but I want to discuss my approach and get your opinion about it
it s clear that n^2+5n+7>n^2+3n+1 so 0<(n^2+3n+1)/(n^2+5n+7)<1 so we can consider this as a geometric serie that converge?
many thanks in advance
 
Last edited by a moderator:
Physics news on Phys.org
You can't compare to a geometric series; you have a function of n raised to a power which depends on n. That is similar to <br /> \left(1 - \frac 1n\right)^{n} \to e^{-1} &gt; 0. For that reason \sum_{n=1}^\infty \left(1 - \frac1n\right)^n does not converge.

I would write <br /> \frac{n^2 + 3n + 1}{n^2 + 5n +7} = 1 - \frac{2n + 6}{n^2 + 5n +7} and take logs.
 
Amaelle said:
Homework Statement:: studying the convergence of a serie (look at the image)
Relevant Equations:: geometric serie, convergence

Good day
I want to study the connvergence of this serie

View attachment 277247
I already have the solution but I want to discuss my approach and get your opinion about it
it s clear that n^2+5n+7>n^2+3n+1 so 0<(n^2+3n+1)/(n^2+5n+7)<1 so we can consider this as a geometric serie that converge?
many thanks in advance
If you can establish the fact that ##\lim_{n \to \infty}\left( \frac{n^2 + 3n + 1}{n^2 + 5n + 7}\right)^{n^2} \ne 0##, then you can conclude that the series diverges. This limit has the indeterminate form ##[1^\infty]##, so the best way of determining the limit is by the use of logarithms, and getting it to a form in which L'Hopital's Rule can be applied.
 
pasmith said:
You can't compare to a geometric series; you have a function of n raised to a power which depends on n. That is similar to <br /> \left(1 - \frac 1n\right)^{n} \to e^{-1} &gt; 0. For that reason \sum_{n=1}^\infty \left(1 - \frac1n\right)^n does not converge.

I would write <br /> \frac{n^2 + 3n + 1}{n^2 + 5n +7} = 1 - \frac{2n + 6}{n^2 + 5n +7} and take logs.
thanks you so much!
 
Mark44 said:
If you can establish the fact that ##\lim_{n \to \infty}\left( \frac{n^2 + 3n + 1}{n^2 + 5n + 7}\right)^{n^2} \ne 0##, then you can conclude that the series diverges. This limit has the indeterminate form ##[1^\infty]##, so the best way of determining the limit is by the use of logarithms, and getting it to a form in which L'Hopital's Rule can be applied.
thanks so much!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top