- 10,876
- 423
Is there a way to see that if \|x-y\| is "small", then so is \|x^{-1}-y^{-1}\|? For example, if \|x-y\|<r, is there a function f such that \|x^{-1}-y^{-1}\|<f(r)
Edit: Nevermind. What I needed is just the operator version of (1/2-2/3)=(3-2)/6:
\|x^{-1}-y^{-1}\|=\|x^{-1}yy^{-1}-x^{-1}xy^{-1}\|=\|x^{-1}(y-x)y^{-1}\|\leq \|x^{-1}\|\|x-y\|\|y^{-1}\|
Edit: Nevermind. What I needed is just the operator version of (1/2-2/3)=(3-2)/6:
\|x^{-1}-y^{-1}\|=\|x^{-1}yy^{-1}-x^{-1}xy^{-1}\|=\|x^{-1}(y-x)y^{-1}\|\leq \|x^{-1}\|\|x-y\|\|y^{-1}\|
Last edited: