Distance from a point to a plane

  • Thread starter Thread starter nns91
  • Start date Start date
  • Tags Tags
    Plane Point
nns91
Messages
301
Reaction score
1

Homework Statement



Find the distance from (3,0,10) to the plane 2x+3y+z=2

Homework Equations



D= absv(ax+by+cd)/ sqrt(a^2+b^2+c^2)

The Attempt at a Solution



I found vector n= 2i + 3j + k

Thus, the distance is 16/sqrt(14). Can you guys check the result for me ? I am not sure if I am right.
 
Physics news on Phys.org
Your vector n is the normal to the plane. Can you show us how you got the distance you show?
 
That's how I have solved this question :
[; ax+by+cz+d=0 \rightarrow 2x+3y+z-2=0 \\
(x_0,y_0,z_0) \rightarrow (3,0,10) \\
D=\frac{a\cdot x_0+b\cdot y_0+c\cdot z_0-d}{\sqrt{a^2+b^2+c^2}}
= \frac{2\cdot3+3\cdot0+1\cdot10-2}{\sqrt{2^2+3^2+1^2}}=\frac{14}{\sqrt{14}}=\sqrt{14} ;]


http://img222.imageshack.us/my.php?image=13210615.gif"
 
Last edited by a moderator:
Of the two answers shown: 16/sqrt(14) and sqrt(14), I agree with the latter.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top