I Distinctiveness of the set of nxn matrices as a ring

  • I
  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Matrices Ring Set
Mr Davis 97
Messages
1,461
Reaction score
44
So I know that in general, for the ring of ##n \times n## matrices, if ##AB = 0##, then it is not necessarily true that ##A=0## or ##B=0##. However, in other rings, for example the integers ##\mathbb{Z}##, I know that this statement is true. So what property is the ring of matrices lacking such that it is not true in general?
 
Physics news on Phys.org
A ring is called an integral domain, if ##ab = 0 \Longrightarrow a=0 \vee b=0##. Elements ##a## for which there is an element ##b## with ##a \cdot b = 0## are called zero-divisors. So an integral domain is a ring without zero-divisors or more precisely: with ##0## as only zero-divisor. E.g. ##\mathbb{Z}_6## has also zero-divisors, namely ##2## and ##3##. (I'm not quite sure, whether ##0## is excluded in the definition of a zero-divisor or not. It's not really important, but "has no zero-divisors" is a usual phrase, so ##0## is probably excluded.)
 
  • Like
Likes FactChecker and Mr Davis 97
fresh_42 said:
A ring is called an integral domain, if ##ab = 0 \Longrightarrow a=0 \vee b=0##. Elements ##a## for which there is an element ##b## with ##a \cdot b = 0## are called zero-divisors. So an integral domain is a ring without zero-divisors or more precisely: with ##0## as only zero-divisor. E.g. ##\mathbb{Z}_6## has also zero-divisors, namely ##2## and ##3##. (I'm not quite sure, whether ##0## is excluded in the definition of a zero-divisor or not. It's not really important, but "has no zero-divisors" is a usual phrase, so ##0## is probably excluded.)
One more question. Why doesn't a subring necessarily have to have the same multiplicative identity as the bigger ring?
 
Mr Davis 97 said:
One more question. Why doesn't a subring necessarily have to have the same multiplicative identity as the bigger ring?
Do you have an example? I can only think of examples like ##n\cdot \mathbb{Z} \subseteq \mathbb{Z}## where the subring has none.
In general, a multiplicative identity doesn't always exist. The multiplicative structure of a ring doesn't need to define a group structure, but if rings are compared like ring and subring and both have a ##1##, then it's usually required to be the same. At least the ##1## in the ring is also a ##1## in the subring, if it's included. If not, and the subring has another element as a ##1## it's getting a bit messy, since this one will act as a ##1## on certain elements of the ring as well - or you have completely different multiplicative structures, in which case one doesn't speak of a subring.
 
fresh_42 said:
Do you have an example? I can only think of examples like n⋅Z⊆Zn⋅Z⊆Zn\cdot \mathbb{Z} \subseteq \mathbb{Z} where the subring has none.

How about {0,2,4} as a subring of Z6. The multiplicative identity of the subring is 4.
 
  • Like
Likes WWGD and fresh_42
You can see this issue of AB=0 for matrices in terms of the fundamental theorem of linear algebra , re the orthogonality of the column space of A with the row space of B:

https://en.wikipedia.org/wiki/Fundamental_theorem_of_linear_algebra

Basically , if A has rows ## a_1,a_2 ,..,a_n ## and B has columns ## b_1, b_2,.., b_n ## then you have that
## a_ i. b_j =0 ## for all ## 0 \leq i,j \leq n ## so that every row of A is orthogonal to every column of B . This implies, by linearity, that the row space of A is orthogonal to the column space of B and the column space of B is contained in the nullspace of A..
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top