I Distinguishing Einstein Cartan from GR: Experiments

Click For Summary
Experiments to distinguish Einstein-Cartan gravity from General Relativity (GR) are challenging due to their agreement in vacuum conditions, with differences emerging only in the presence of matter where torsion can occur. Current tests of GR typically involve large macroscopic objects, making it difficult to assess the role of spin, which is crucial in Einstein-Cartan theory. The University of Washington has attempted to create a high angular momentum source to test spin-dependent gravity, but their device lacks the sensitivity needed for clear differentiation. Neutron stars may provide insights, as their aligned spins could modify their equilibrium states, although experimental predictions remain elusive. Overall, while theoretical discussions continue, practical observations of torsion and effective experiments are still lacking.
Messages
36,511
Reaction score
15,283
Are there any experiments either already performed or even simply proposed that could be used to distinguish Einstein Cartan gravity from GR?

My current understanding is that they are the same in vacuum, and only differ in matter. In matter the Einstein Cartan metric can have torsion, unlike the GR metric, but in vacuum they agree. Because of the way spin is related to torsion in Einstein Cartan and how important spin is in QM, it seems like that might be a viable candidate for GR violations.
 
Last edited:
Physics news on Phys.org
I'm not aware of any observation of torsion yet. It's difficult, because all our tests of GR vs. alternative theories of gravitation rely on huge (astronomical) macroscopic objects. So spin doesn't play a role but only macroscopic descriptions of matter (aka hydrodynamics) and the electromagnetic field, which in the gauge approach to gravity a la Kibble lead to standard GR.
 
The University of Washington gravity guys tried to build a high angular momentum source/target. It was a mix of two materials magnetized in opposite directions, but one had more spin than the other. This would allow them to test spin-dependent gravity. I don't know how far they got with this.

Even so, this device was many tens of orders of magnitude less sensitive than they would need to distinguish GR from Einstein-Cartan.
 
  • Like
  • Informative
Likes vanhees71, Ibix, Dale and 1 other person
vanhees71 said:
I'm not aware of any observation of torsion yet. It's difficult, because all our tests of GR vs. alternative theories of gravitation rely on huge (astronomical) macroscopic objects. So spin doesn't play a role but only macroscopic descriptions of matter (aka hydrodynamics) and the electromagnetic field, which in the gauge approach to gravity a la Kibble lead to standard GR.

In neutron stars the spins align resulting in a total big spin. That should result in some modification in the state/equilibrium equation of the star, I think.
 
Last edited:
  • Like
Likes vanhees71 and Dale
Poplawski writes a lot about Einstein-Cartan theory. https://www.sciencedirect.com/science/article/pii/S0370269310011561 has a high citation count, it may or not be helpful. Unfortunately, I think Poplawski focuses on the aspect of the theory that predicts that BH collapse "bounces" in Einstein-Cartan theory, which may not be the sort of experimentally testable prediction you're looking for.
 
  • Like
  • Informative
Likes vanhees71 and Dale
Hello, everyone, hope someone will resolve my doubts. I have posted here some two years ago asking for an explanation of the Lorentz transforms derivation found in the Einstein 1905 paper. The answer I got seemed quite satisfactory. Two years after I revisit this derivation and this is what I see. In the Einstein original paper, the Lorentz transforms derivation included as a premise that light is always propagated along the direction perpendicular to the line of motion when viewed from the...