Distribution of Euclidean Distance btwn 2 Non-Centered Points in 2D

Amiutza
Messages
3
Reaction score
0
I would like to know the distribution of z as the euclidean distance between 2 points which are not centred in the origin. If I assume 2 points in the 2D plane A(Xa,Ya) and B(Xb,Yb), where the Xa~N(xa,s^2), Xb~N(xb,s^2), Ya~N(ya,s^2), Yb~N(yb,s^2), then the distance between A and B, would be z=sqrt[(Xa-Xb)^2 + (Ya-Yb)^2]. Now: X=Xa-Xb and Y=Ya-Yb are themselves RVs with means (xb-xa) and (yb-ya) and variance 2s^2, so the problem that I have is determining the pdf of z=sqrt(X^2 +Y^2), knowing that X and Y are 2 uncorrelated Gaussian RVs with NON-ZERO MEANS and the same variance, 2s^2.

The Rician distribution applies when z is the distance from the origin to a bivariate RV. This has been proven only when the RVs (a and b) are CIRCULAR bivariate RVS (proof here -> Chapter 13, subchapter 13.8.2, page 680, of Mathematical Techniques for Engineers and Scientists - Larry C. Andrews, Ronald L. Phillips - 2003). I would like to know the pdf/cdf of z as a distance between two points (none of them being centred in the origin) when they are not circular. Is there a known parametric distribution for z? What would this distribution look like if it is a generalized form of the Rician distribution?
 
Mathematics news on Phys.org


I suspect that the distribution could be transformed to the Rician by first transforming from the x and y means to the center and then scaling using the variances, so that an ellipse becomes a circle.

Note: I have not tried to work it out, but my intuition tells me it should work.
 


Amiutza said:
X=Xa-Xb and Y=Ya-Yb are themselves RVs with means (xb-xa) and (yb-ya) and variance 2s^2

X and Y are two independent normally distributed random variables with the same variance. If you transform coordinates to make (xb-xa,yb-ya) the origin, then you would have a Rayleigh distribution.
 


Thank you for your replies, but I am not looking to obtain a Rician distribution. I would like to know the distribution of z, in the given conditions, without making any transformations or other assumptions.
 


Hi there! I have managed to find out that indeed a transformation is needed into polar coordinates. Rotating the mean distance z with a θ angle and using the appropriate notation will results in proving that z is Ricianly distributed. Thanks guys for your help!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top