Distribution of Log of Random Variable

andrewcheong
Messages
8
Reaction score
0
Let X and Y be random variables.

X ~ N(u,s^2)
Y = r ln X, where r is a constant.

What is the distribution of Y?

(This is not a homework problem. It's just related to something I was curious about, and I can't figure out how to solve this, if it is solvable...)
 
Mathematics news on Phys.org
You know that

1 = \int_{-\infty}^{\infty}dx~\frac{1}{\sqrt{2\pi \sigma^2}} \exp\left[\left(\frac{x-\mu}{\sigma}\right)^2\right] = \int_{0}^{\infty}dx~\frac{2}{\sqrt{2\pi \sigma^2}} \exp\left[\left(\frac{x-\mu}{\sigma}\right)^2\right]

So, make a change of variables y = r \ln x. The lower limit x = 0 becomes y = -\infty and the upper limit remains infinity. dy = r dx/x = r dx e^{-y/r}

Hence,

1 = \int_{-\infty}^{\infty}dy~\frac{2e^{y/r}}{r\sqrt{2\pi \sigma^2}} \exp\left[\left(\frac{e^{y/r}-\mu}{\sigma}\right)^2\right]

The integrand is thus the probability density function for y. Note that the distribution is only valid for values of x zero or greater, as y is not defined for x < 0. This is why in the first line I used the evenness of the gaussian integrand to write it in terms of x > 0 only.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top