Distribution of power congruence classes

dec178
Messages
2
Reaction score
0
Hi, I need help to prove this for my professor
this is called "Distribution of power congruence classes" or something like that

With all n∈NiS∈N correct
1) n ≡Qs(n)(mod 10s-1)
2) n ≡Qs(n)(mod 10s+1)

http://img546.imageshack.us/img546/8341/withall.png
 
Last edited by a moderator:
Physics news on Phys.org
Your question isn't clear.

You must explain your notation. What is N_i? What is Q_s(n)? What is Q'_s(n) ?

Instead of "correct", perhaps you mean "it is true that".
 
Yes, I need to proove, that this is correct.
To separate Q_s(n) and Q'_s(n), I used apostrophe '
I don't know, professor just gave this for us in a middle of Modular arithmetic class
 
Last edited:
Can we perhaps decipher the question as follows:

Let n and s be positive integers, let Qs(n) be the sum of the numbers formed by the digits of n in groups of s, starting from the right, and let Qs'(n) be the alternating such sum.

Show that Qs(n)\equivn (mod 10s-1) and Qs'(n)\equivn (mod 10s+1)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top