(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

F= [tex]\frac{r}{r}[/tex]

Find divF

and curlF

2. Relevant equations

r= x[tex]\widehat{i}[/tex] + y[tex]\widehat{j}[/tex] + z[tex]\widehat{k}[/tex]

r = [tex]\sqrt{(x^{2} + y^{2} + z^{2})}[/tex]

3. The attempt at a solution

F= [tex]\frac{x}{(\sqrt{x^{2} + y^{2} + z^{2}})}[/tex][tex]\widehat{i}[/tex] + [tex]\frac{y}{(\sqrt{x^{2} + y^{2} + z^{2}})}[/tex][tex]\widehat{j}[/tex] + [tex]\frac{z}{(\sqrt{x^{2} + y^{2} + z^{2}})}[/tex][tex]\widehat{k}[/tex]

divF= [tex]\frac{\partial}{\partial x}[/tex] [tex](x(x^{2} + y^{2} + z^{2})^{\frac{-1}{2}}[/tex] + [tex]\frac{\partial}{\partial y}[/tex][tex](y(x^{2} + y^{2} + z^{2})^{\frac{-1}{2}}[/tex] + [tex]\frac{\partial}{\partial z}[/tex][tex](z(x^{2} + y^{2} + z^{2})^{\frac{-1}{2}}[/tex]

Take the partial derivative of x first.

let u = [tex]x^{2} + y^{2} + z^{2}[/tex]

and a = [tex] xu^{2}[/tex]

[tex]\frac{\partial u}{\partial x}[/tex] = 2x

[tex]\frac{\partial a}{\partial u}[/tex] = [tex]\frac{-1}{2}[/tex]x[tex]u^{\frac{-3}{2}}[/tex]

[tex]\frac{\partial a}{\partial x}[/tex] = -[tex]x^{2}[/tex][tex]u^{\frac{-3}{2}}[/tex]

= -[tex]x^{2}[/tex]([tex]\frac{1}{\sqrt{(x^{2} + y^{2} + z^{2})}}[/tex][tex])^{3}[/tex]

The other derivatives would give similar answers, and the final answer would be

-[tex]\frac{x^{2}}{r^{3}}[/tex]-[tex]\frac{y^{2}}{r^{3}}[/tex]-[tex]\frac{z^{2}}{r^{3}}[/tex]

This is apparently the incorrect answer, can anybody help?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Div and curl

**Physics Forums | Science Articles, Homework Help, Discussion**