Divergence Theorem Homework: Find Divergence

Tyst
Messages
26
Reaction score
0

Homework Statement


Here is a link to the problem:
http://www.brainmass.com/homework-help/physics/electromagnetic-theory/68800


The Attempt at a Solution


To find the divergence

1/r^2*d(r)*(r^2*r^2*cos(theta))
+[1/r*sin(theta)]*d(theta)*(sin(theta)*r^2*cos(phi))
-[1/r*sin(theta)]*d(phi)*(r^2*cos(theta)*sin(phi))

Which gives

1/r^2*4*r^3*cos(theta)
+[1/r*sin(theta)]*(cos(theta)*r^2*cos(phi))
-[1/r*sin(theta)]*(r^2*cos(theta)*cos(phi))

Is this correct?
Looks correct to this point

Following this i get

=4*r*cos(theta)
What do you mean by "following this"? How did you get that and for what?

which gives me the right answer when i continue on with the question, however i am unsure about my second step... shouldn't i have to differentiate the 1/r*sin(theta) in the second term? And the 1/r^2 in the first? Or does the d(variable) only apply to the expressions written after it? As i guess you can tell, I'm confused and this is probably a really stupid question... Thanks in advance for you help ladies and gents.
It would help if you used parenthes:
div v= (1/r^2)Dr(r2vr)+ (1/r sin theta)Dtheta(sin theta vtheta)+ (1/r sin theta) Dphi(vphi)

Yes, the derivative only applies to the expression immediately following. Usually it is in the derivative symbol or in parentheses to indicate that.
 
Last edited by a moderator:
Physics news on Phys.org
I'm a little confused as to the notational convention for \phi \ \mbox{and} \ \theta. Which one in this question is the azimuthal angle to the xy plane?
 
Phi is the azimuthal angle
 
4rcos(theta) came from simplifying the expressions above it, it is the divergence.

And thank you - you answered my question!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top