sszabo
- 8
- 0
In h.m. schey, div grad curl and all that, II-25:
Use the divergence theorem to show that
\int\int_S \hat{\mathbf{n}}\,dS=0,
where S is a closed surface and
\hat{\mathbf{n}} the unit vector
normal to the surface S.
How should I understand the l.h.s. ?
Coordinatewise? The r.h.s. is not 0, but zero vector?
Use the divergence theorem to show that
\int\int_S \hat{\mathbf{n}}\,dS=0,
where S is a closed surface and
\hat{\mathbf{n}} the unit vector
normal to the surface S.
How should I understand the l.h.s. ?
Coordinatewise? The r.h.s. is not 0, but zero vector?