Divisibility of n by 7: Elementary Proof

  • Thread starter Thread starter JFo
  • Start date Start date
  • Tags Tags
    Elementary Proof
Click For Summary
The discussion focuses on proving that an integer n is divisible by 7 if and only if the difference obtained by removing the last digit and subtracting twice that digit is also divisible by 7. The proof begins by expressing n in terms of its last digit and shows that if n is divisible by 7, then the transformed expression c - 2d must also be divisible by 7. The conversation highlights the importance of understanding the manipulation of digits in base 10 and how they relate to divisibility rules. A suggestion is made to consider c - 2d instead of the original approach. The proof ultimately connects the two conditions through elementary arithmetic properties.
JFo
Messages
91
Reaction score
0
Remove the last digit from a number and subtract twice this digit from the new (shorter) number. Show that the original number is divisible by 7 iff this difference is divisible by 7.

I have only the division algorithm and the fact that the integers are closed under addition/multiplication/subtraction to work with plus elementary arithmetic. By the way, all numbers are in base 10

Heres what I've got:
let n be an integer. By the division algorithm I can find an integers c,d s.t. n = 10c + d where 0<= d < 10

The number 10c is n with the last digit removed. We need to show 10c + d is divisble by 7 iff 10c - 2d is divisible by 7

Suppose 10c + d is divisble by 7. Then 10c + d = 7m for some integer m.

using the division algorithm we can find integers e,f st. d = 7e + f where
0<= f < 7

given the restrictions that 0<=d<10 we must have e = 0 or 1.

Here's where I'm stuck. Any suggestions?
 
Physics news on Phys.org
The number 10c is n with the last digit removed.

No, 10c is n with the last digit replaced with a zero. You want to consider c - 2d.

This proof can be done like so (using various elementary divisibility properties):

c - 2d is divisible by 7
<=>
10c - 20d is divisibly by 7
<=>
10c - 20d + 21d is divisibly by 7
<=>
10c + d is divisible by 7
<=>
n is divisible by 7.

If you had modular arithmetic in your inventory, this type of problem would be routine.
 
Thank you muzza! I really need to get rid of this extra chromosome!
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 0 ·
Replies
0
Views
780
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
15
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K