The sequence is probably unbounded, for the reason you state. But for a given, fixed prime, there must be a bound. This is because, if your primes are {2,3,5,...,p} and defining M=2*3*5*...*p, then all numbers of the form kM-1 are not divisible by any of the primes, so M-1 is an upper bound (by a large excess, probably).
Here's another hint. The problem is analogous to this one: given the vector-valued function F(n) = (n mod 2, n mod 3, n mod 5, ..., n mod p), find the longest sequence of consecutive integers such that there is some zero component on all of the corresponding F(n). These vectors repeat in a pattern (modulo M), and there are relatively few vectors which have no zeroes, namely 1*2*4*...*(p-1) of them (which happens to be phi(M)). The large majority of the vectors will have some zero. For an example, for {2,3,5,7}, M=210 but only 48 are zero-free. Distributed, how? Ahhh, that's the question.