Some excellent responses so far. Here's my understanding of the situation:
simon009988 said:
The majority of the science teachers in my school agree that electrons do move in orbits around an atom in a physical way but I disagree I see them as wave functions/ clouds that are stationary. Who's right?
The answer here is pretty clearcut -- you're absolutely right. The only minor ambiguity is in our definition of stationary, as was pointed out later in the thread. In the rest frame of the nucleus, the ground state wave function that describes the electron cloud does not change with time unless acted upon by outside forces (such as a photon). Whether or not the electron itself is stationary...well, let's step back a bit and look at the big picture.
One of the things that made quantum mechanics such a revolutionary theory was the idea that, as far as our experiments were concerned, particles could not always be said to have definite values of position and momentum. This led to the idea that, in general, a particle's position or momentum was not a single number, but instead a
superposition of states, each with a different value of position or momentum (depending on which set of states you're looking at). Again, in general, this means that a particle is not said to have this position or this velocity, but rather some combination of positions and/or velocities. This idea is expressed by the wave function which, when its norm is squared, will give you the probability that you
measure a particular position or velocity for the particle.
So what does this mean for our electron cloud? Well, the "cloud" is basically the wave function I mentioned before, so it tells us how likely a particle is to be in a particular place. Another way of looking at this is that it gives us a superposition of answers to the question, "where is the electron?". Since most of the answers to this question are relegated to the space very near the nucleus of the atom, we won't notice this superposition unless our instruments are very sensitive. That is, in the classical limit, we'll just give the electron a single position.
The same is true for the momentum. In general, a stationary state of an atom (that is, one where the electron's wave function doesn't change with time) will have a "cloud" of momenta and, since velocity is just the momentum over the mass, a "cloud" of velocities. Be cautious in interpreting this, however, because it's not a cloud in space (that is, a given position is not associated with a particular velocity), it's a cloud in momentum space. Anyway, this gives us a means of answering -- or generating a superposition of answers to -- the question, "Is the electron moving?" In general, the state of the electron will include both "yes" and "no" answers.
This has the additional caveat that, from the theoretical point of view, the space of possible velocities is continuous. This means that the "no" answer actually takes up an infinitesimally small portion of the space, so for all intents and purposes, the answer would be yes. On the other hand, no instrument of measurement is perfect, so there is not an infinitesimally small portion of the space that would be consistent with stationarity
within the errors. I fear, however, that we're now delving too much into technicalities.
When you measure the elctron and the wave function collapses the electron randomly picks a place to go, and then a different place next time; So does that mean it is moving in between checks?
Quantum mechanics includes not only a means of generating the wave function for a particular situation, but also evolving it with time. Whenever we "measure" the position of an electron, we "collapse" its wave function. If we neglect the instrumental errors, this means that we force it into a particular position state and generate a
single answer to the question, "Where is the electron?". Remember, however, that the single answer that we get will not be exactly predictable; that is, it could have been a range of other answers.
If, after generating this answer, we stop measuring (and interfering with) the electron's position, the wave function will be able to evolve -- spread out again to create a superposition answers. There may or may not be a final stationary state to this evolution, but the point is that it will not spread out instantaneously. Roughly speaking, the sooner we make our second measurement, the less likely we are to get an answer very discrepant from our original one.
I hope this is helpful.