Do Gramian Matrices Have Only One Non-Zero Eigenvalue?

  • Thread starter Thread starter I_am_learning
  • Start date Start date
  • Tags Tags
    Eigenvalues Matrix
AI Thread Summary
A Gramian matrix G, defined as G = x*xT for a column vector x, typically has only one non-zero eigenvalue. This eigenvalue corresponds to the squared norm of the vector x, specifically λ = x^T x. The discussion highlights that if v is an eigenvector associated with a non-zero eigenvalue, it must be a non-zero multiple of x. A simpler proof is provided, showing that the relationship between the eigenvector and the vector x confirms the singular nature of the non-zero eigenvalue. Overall, the thread confirms the standard result that Gramian matrices have a single non-zero eigenvalue.
I_am_learning
Messages
681
Reaction score
16
if x is a column vector, then a matrix G = x*xT is a Gramian Matrix.
When I tried calculating the matrix G and its eigenvalues for cases when x = [x1 x2]' and [x1 x2 x3]'
by actually working out the algebra, it turned out (if I didn't do any mistakes) that the eigen values are all zeros except one which is equal to (x12+x22 OR x12 + x22 + x32) depending upon the case.
Is this a standard result for a Gramian Matrix to have a single non-zero eigenvalue? If, yes, is there a simpler proof?

Thank you.
 
Mathematics news on Phys.org
Yes that is a standard and pretty simple fact. How did you compute the eigenvalues? Did you compute characteristic polynomials and then find their roots? If so, then yes, there is a much simpler proof.
 
Hawkeye18 said:
Yes that is a standard and pretty simple fact. How did you compute the eigenvalues? Did you compute characteristic polynomials and then find their roots? If so, then yes, there is a much simpler proof.
Yes, I solved the roots of characteristic equation, and it was a nasty business for even a 3x3 matrix. :D Would love to know the simpler method.
 
Let ##\lambda \ne 0## be an eigenvalue, and ##\mathbf v\ne\mathbf 0## be he corresponding eigenvector. That means ##G\mathbf v =\lambda\mathbf v##. But $$G \mathbf v = \mathbf x (\mathbf x^T \mathbf v)$$ and ##(\mathbf x^T \mathbf v)## is a scalar. Therefore $$(\mathbf x^T \mathbf v) \mathbf x = \lambda \mathbf v,$$ so the eigenvector ##\mathbf v## must be a non-zero multiple of ##\mathbf x##. Substituting ##a\mathbf x## (where ##a\ne0## is a scalar) in the above equation, we get that indeed ## a\mathbf x ## is an eigenvector corresponding to ##\lambda= \mathbf x^T\mathbf x##.
 
  • Like
Likes I_am_learning
Hawkeye18 said:
Let ##\lambda \ne 0## be an eigenvalue, and ##\mathbf v\ne\mathbf 0## be he corresponding eigenvector. That means ##G\mathbf v =\lambda\mathbf v##. But $$G \mathbf v = \mathbf x (\mathbf x^T \mathbf v)$$ and ##(\mathbf x^T \mathbf v)## is a scalar. Therefore $$(\mathbf x^T \mathbf v) \mathbf x = \lambda \mathbf v,$$ so the eigenvector ##\mathbf v## must be a non-zero multiple of ##\mathbf x##. Substituting ##a\mathbf x## (where ##a\ne0## is a scalar) in the above equation, we get that indeed ## a\mathbf x ## is an eigenvector corresponding to ##\lambda= \mathbf x^T\mathbf x##.
I cannot see why the bold part should be true?
But, doing the underlined part, i.e. substitution v=ax, I can see that it gives a solution, is that from this you infered that the bold part should hold?

Thank you for your help.
 
I_am_learning said:
I cannot see why the bold part should be true?
But, doing the underlined part, i.e. substitution v=ax, I can see that it gives a solution, is that from this you infered that the bold part should hold?

Thank you for your help.
No, the "bold" part is true independently of the "underlined" part, they both prove different parts of the statement.

For the "bold" part: we know that ##(\mathbf x^T\mathbf v)## is a number, let call it ##\beta##. Then the equation is rewritten as ##\beta\mathbf x = \lambda\mathbf v##, and solving it for ##\mathbf v ## gives us ##\mathbf v = (\beta/\lambda) \mathbf x##.

Now, the constant ##\beta## depends on the unknown ##\mathbf v##, and we do not know what ##\lambda## is, so we cannot say from here that ##\mathbf v = (\beta/\lambda) \mathbf x= a\mathbf x## is an eigenvector. But what we can say is that if ##\mathbf v## is an eigenvector corresponding to a non-zero eigenvalue ##\lambda##, then it must be a non-zero multiple of ##\mathbf x##.

Substituting then ##\mathbf v=a\mathbf x## we get that it is indeed an eigenvector and find ##\lambda##. So the "underlined" part give you that ##\mathbf v=a\mathbf x## is an eigenvector, and gives the corresponding eigenvalue. The "bold"" part shown that there are no other eigenvectors corresponding to a non-zero eigenvalue.
 
  • Like
Likes I_am_learning
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top