noblegas
- 266
- 0
Homework Statement
Consider a particle that moves in three dimensions with wave function \varphi . Use operator methods to show that if \varphi has total angular momentm quantum number l=0 , then \varphi satifies
L\varphi=0
for all three components L_\alpha of the total angular momentum L
Homework Equations
[L^2,L_\alpha]?
L^2=L_x^2+L_y^2+L_z^2?
L^2=\hbar*l(l+1) , l=0,1/2,1,3/2,... ?
L_z=m\hbar , m=-l, -l+1,...,l-1,l. ?
The Attempt at a Solution
[L^2,L_\alpha]=[L_x^2+L_y^2+L_z^2,L_\alpha]=[L_x^2,L_\alpha]+[L_y^2,L_\alpha]+[L_z^2,L_\alpha]. [AB,C]=A[B,C]+[A,C]B; Therefore,[L_x^2,L_\alpha]+[L_y^2,L_\alpha]+[L_z^2,L_\alpha]=L_x[L_x,L_\alpha]+[L_x,L_\alpha]L_x+L_y[L_y,L_\alpha]+[L_y,L_\alpha]L_y+L_z[L_z,L_\alpha]+[L_z,L_\alpha]L_z. Now what?