A Does Closure Under Multiplication in One Subspace Imply the Same for Another?

  • A
  • Thread starter Thread starter mnb96
  • Start date Start date
  • Tags Tags
    Sums
mnb96
Messages
711
Reaction score
5
Hi,

consider a (finite dimensional) vector space ##V=U\oplus W##, where the subspaces ##U## and ##V## are not necessarily orthogonal, equipped with a bilinear product ##*:V\times V \rightarrow V##.

The subspace ##U## is closed under multiplication ##*##, thus ##U## is a subalgebra of ##V##.

Does this imply that also ##W## is a subalgebra of ##V##?

(Note, I can already prove the special case that if U and W are orthogonal, then both U and W are indeed subalgebras).
 
Physics news on Phys.org
mnb96 said:
Hi,

consider a (finite dimensional) vector space ##V=U\oplus W##, where the subspaces ##U## and ##V## are not necessarily orthogonal, equipped with a bilinear product ##*:V\times V \rightarrow V##.

The subspace ##U## is closed under multiplication ##*##, thus ##U## is a subalgebra of ##V##.

Does this imply that also ##W## is a subalgebra of ##V##?

(Note, I can already prove that if U and W are orthogonal, then both U and W are indeed subalgebras, but I am interested in the general case).
Just as a side note: orthogonal doesn't make sense, as long as you don't specify the quadratic form and the field. Vector spaces in general don't automatically allow inner products.

The answer to your question is no. Example:
##h=\begin{bmatrix}1&0\\0&-1\end{bmatrix}\; , \;x=\begin{bmatrix}0&1\\0&0\end{bmatrix}\; , \;y=\begin{bmatrix}0&0\\1&0\end{bmatrix}## with ##V=\operatorname{span}_\mathbb{F}\{\,h,x,y\,\}\; , \;U=\mathbb{F}\cdot h\; , \; W=\operatorname{span}_\mathbb{F}\{\,x,y\,\}##. With the multiplication ##v*w= v\cdot w - w \cdot v## we have ##h*h=0\in U## and ##x*y=h \notin W##.

Edit: Typo corrected. ##h_{21}=0## not ##1##.
 
Last edited:
Hi fresh_42,

you gave a very interesting counterexample of my statement that is actually too inspiring to close the discussion here :)

In fact, let's define the "product of two subspaces" as ##UV=\left \{uv\;|\; u\in U, \, v\in V \right \}##, and notice that in your construction ##H^2=0##. In other words, ##H## (as a set) acted as a nilpotent w.r.t. the product.

I am wondering if it is possible to find a similar counterexample, in which ##H^2=H##, i.e. the closure of ##H## w.r.t. the product is ##H## itself.
 
mnb96 said:
Hi fresh_42,

you gave a very interesting counterexample of my statement that is actually too inspiring to close the discussion here :)
It is the Lie algebra ##\mathfrak{sl}(2)## with ##.*. =[.,.]## as Lie multiplication.
In fact, let's define the "product of two subspaces" as ##UV=\left \{uv\;|\; u\in U, \, v\in V \right \}##, and notice that in your construction ##H^2=0##. In other words, ##H## (as a set) acted as a nilpotent w.r.t. the product.
What does "as a set" mean? ##H=h\cdot \mathbb{F}\,##? That's the heritage of the Lie algebra structure, where ##[X,X]=X*X=0## holds for any element.
I am wondering if it is possible to find a similar counterexample, in which ##H^2=H##, i.e. the closure of ##H## w.r.t. the product is ##H## itself.
We don't have any restrictions for the multiplication. So we can simply define a multiplication by ##A^2=A## and leave all other as they are: ##H*X=2X, H*Y=-2Y,X*Y=H##. I don't see any obvious reasons, why this shouldn't work. However, to find a realization by matrices or similar could take a moment, at least if we don't want to use the tensor algebra and its universal property. I would look among genetic algebras for an example.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top