Does Distance from Center Affect Acceleration in a Spinning Disk?

AI Thread Summary
In a spinning disk, the acceleration experienced by an object is directly proportional to its distance from the center of rotation. Specifically, the centripetal acceleration equation illustrates that acceleration increases with greater radius. Therefore, an object located 5 miles from the center will experience greater acceleration than one positioned 5 feet from the center. This relationship is consistent with both mathematical principles and intuitive understanding of rotational motion. The discussion confirms that distance from the center significantly affects acceleration in a spinning disk.
TheAntiRelative
Messages
133
Reaction score
0
If I take a perfectly rigid disk 10 miles in diameter and set it spinning at a constant speed. Is the constant acceleration an object experiences riding 5 feet from the center the same as it would be if it were 5 miles from the center? I know many other things would be different but I mean the acceleration alone.

Thanks
 
Physics news on Phys.org
No, this follows directly from the centripetal acceleration equation (as well as intuition).
 
No

a = -(2Pi/T)^2 *r (Wish I could learn Latex..)


The acceleration is directly proportional to the distance from the centre of rotation.
 
Ahhh... momentary insanity. Isn't it great? :rolleyes:
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top