"Does Finite Group Contain Subgroup of Index 2 if Element has Order 2?

ForMyThunder
Messages
149
Reaction score
0
Is it true that if a finite group G contains a subgroup of index 2, then there is an element of G with order 2?
 
Physics news on Phys.org
I'm thinking that if H is a subgroup of index 2, then H is normal in G. Then for all x in G, xH=Hx, so (xH)(Hx)=H and xHx=H. So x=x^-1 and x has order 2. Is this correct?
 
The statement is true. If G has finite order and a subgroup of index two, G must have even order by Lagrange's theorem. Then, you can easily prove there must exist an element which is its own inverse. In fact, this is a standard exercise in any text.

Regarding your proof: Is multiplication of a left coset by a right coset well defined? And why do you end up with H on the right side? Doing this assumes xx=e.
 
You're right.

But you have to have x^2 in H for all x not in H. (xH)(xH)=H because otherwise, it would be an identity: (xH)(xH)=(xH) and cancellation gives that x is in H.

I don't see any way to prove this.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top