Does Hydrostatic Pressure Follow the Same Rules for All Shapes of Containers?

AI Thread Summary
Hydrostatic pressure is defined as pgh, where p is water density, g is gravitational acceleration, and h is the depth below the surface. This principle applies universally, regardless of container shape, but the method of calculating weight can differ based on geometry. In a cylindrical beaker, pressure multiplied by area equals the weight of the water, but this relationship changes in non-vertical containers like an hourglass. The pressure at the bottom of the hourglass does not account for the vertical components of pressure acting on its sides, leading to discrepancies in weight calculations. Understanding these forces clarifies the logic behind hydrostatic pressure in various container shapes.
brett351
Messages
3
Reaction score
0
My understanding is that the pressure below the surface of water is pgh.

p - density of water, g - accel of gravity, h - dist below surface

And that this relationship holds regardless of the shape of the container of water. (also, I'm neglecting the atmospheric pressure at the surface)

If I have a cylindrical beaker of water of height H and area A and put it on a scale, I can calc the reading of the scale two ways...

1) pressure at bottom times area is pgHA.

2) density times volume times g is also pgHA.

Both ways give the same reading. Now if the shape of the beaker is an hourglass which has an area at top and bottom of A (same as top and bottom of cylindrical beaker), the two ways don't yield the same result.

Method 1) yields the same result for both shapes but method 2) yields a smaller result for the hourglass. What wrong with my logic? Thanks, Brett.
 
Physics news on Phys.org
I don't understand how you are measuring things. The two pressures are equal, but your method for measuring them is wrong.
 
brett351 said:
My understanding is that the pressure below the surface of water is pgh.

p - density of water, g - accel of gravity, h - dist below surface

And that this relationship holds regardless of the shape of the container of water. (also, I'm neglecting the atmospheric pressure at the surface)
OK.

If I have a cylindrical beaker of water of height H and area A and put it on a scale, I can calc the reading of the scale two ways...

1) pressure at bottom times area is pgHA.

2) density times volume times g is also pgHA.
The scale just measures the weight of the beaker of water. Method 1 gives the water pressure*area on the inside bottom of the beaker--this only equals the weight in the special case where the walls are vertical.

Both ways give the same reading. Now if the shape of the beaker is an hourglass which has an area at top and bottom of A (same as top and bottom of cylindrical beaker), the two ways don't yield the same result.
Because the pressure*area on the bottom of the hourglass beaker does not equal the net force on the beaker due to the water. The water also pushes up on other areas of the beaker surface. If you added up the net force that the water exerts on the entire beaker, that would equal the weight of the water.
 
Thanks Doc Al. Now I see that I forgot to take into account the vertical components of the pressures on the side of the hourglass, Brett.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top