Andrew Mason said:
Neither. The 'temperature' in the Bose-Einstein distribution of blackbody thermal radiation is the temperature of the radiation source. It is not the temperature of the radiation itself. The radiation energy distribution is fundamentally different than the kinetic energy distribution of the molecules in the thermal source.
Sorry bro, but I think you're really reaching here. It is just an issue of terminology, but I find your definition unsettling. You're claiming that the fact that photons don't
usually interact with one another makes them fundamentally different from other particles to the extent that they can't be given a temperature. To be sure, this prevents them from reaching equilibrium while in isolation, but when put in a system with things with which they can interact, they follow the same statistical distribution as any other boson. Furthermore, a region of space (say, within a star or the interstellar medium), is not said to be in complete thermodynamic equilibrium unless the radiation follows a blackbody distribution with the same temperature as the matter. In fact, if the matter is embedded in a blackbody radiation field much larger than itself (like the CMB), then it will eventually reach the temperature of that field, regardless of whether the matter that "created" the field is still around.
There are other reasons I find your definition unsatisfying:
1) It "binds" the radiation field to the matter that created it. Does it really seem reasonable to paramaterize the CMB in terms of a hot gas that no longer exists?
2) As far as I can tell, radiation fields obey the zeroth law of thermodynamics, the basis for the definition of temperature.
3) Virtually every expert and textbook on the subject that I know of has described radiation fields as having a temperature.
We may have to agree to disagree.