jostpuur
- 2,112
- 19
If f_1,f_2,f_3,\ldots and g_1,g_2,g_3,\ldots are some arbitrary real sequences, is it true that
<br /> \underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) = (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n)?<br />
For arbitrary \epsilon >0 there exists N\in\mathbb{N} so that
<br /> n > N\quad\implies\quad f_n > \underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon,<br />
so
<br /> \underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq \underset{n\to\infty}{\textrm{lim inf}}\big((\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) g_n\big) \;=\; (\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),<br />
which implies
<br /> \underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),<br />
but I don't know how to do the other direction.
edit: I just realized I'm assuming \underset{n\to\infty}{\textrm{lim inf}}\; g_n \geq 0 in the calculation, although it was not my original intention, but I think I'll try to not fix it in the remaining editing time. (Actually assuming \underset{k\to\infty}{\textrm{lim inf}}\; f_k - \epsilon \geq 0 too...)
edit edit: In fact I think I'll add the assumption that the sequences are non-negative, because otherwise I have a counter example (f_n)_{n\in\mathbb{N}} = (1,-1,1,-1,\ldots), (g_n)_{n\in\mathbb{N}}=(-1,1,-1,1,\ldots).
<br /> \underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) = (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n)?<br />
For arbitrary \epsilon >0 there exists N\in\mathbb{N} so that
<br /> n > N\quad\implies\quad f_n > \underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon,<br />
so
<br /> \underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq \underset{n\to\infty}{\textrm{lim inf}}\big((\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) g_n\big) \;=\; (\underset{k\to\infty}{\textrm{lim inf}}\; f_k \;-\; \epsilon) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),<br />
which implies
<br /> \underset{n\to\infty}{\textrm{lim inf}}\;(f_n g_n) \geq (\underset{n\to\infty}{\textrm{lim inf}}\; f_n) (\underset{n\to\infty}{\textrm{lim inf}}\; g_n),<br />
but I don't know how to do the other direction.
edit: I just realized I'm assuming \underset{n\to\infty}{\textrm{lim inf}}\; g_n \geq 0 in the calculation, although it was not my original intention, but I think I'll try to not fix it in the remaining editing time. (Actually assuming \underset{k\to\infty}{\textrm{lim inf}}\; f_k - \epsilon \geq 0 too...)
edit edit: In fact I think I'll add the assumption that the sequences are non-negative, because otherwise I have a counter example (f_n)_{n\in\mathbb{N}} = (1,-1,1,-1,\ldots), (g_n)_{n\in\mathbb{N}}=(-1,1,-1,1,\ldots).
Last edited: