Does moving an insulating cylinder produce a magnetic field?

AI Thread Summary
Moving an insulating cylinder does not produce a magnetic field because the electrons are bound and cannot create a current. However, if there is charge in motion, it constitutes a current, which does generate a magnetic field. The discussion also touches on the behavior of dielectrics, noting that a moving polarized dielectric can produce a magnetic field, a concept explored by physicists like Röntgen and Eichenwald. This inquiry into the electrodynamics of moving bodies ultimately contributed to Einstein's theory of relativity. The relationship between charge motion and magnetic fields remains a fundamental aspect of electromagnetic theory.
lelouch_v1
Messages
9
Reaction score
0
Suppose that we have an insulating cylinder with ##\rho_q##. If i move the cylinder towards ##+\hat{n}##, will it produce a magnetic field? My assumption is that since we have an insulator, then the electrons are bound and there cannot be a current, thus a magnetic field is not produced. Also, does this happen if we have a material full of dielectric?
 
Physics news on Phys.org
Assassinos said:
If i move the cylinder towards , will it produce a magnetic field? My assumption is that since we have an insulator, then the electrons are bound and there cannot be a current, thus a magnetic field is not produced.
If there is charge in motion then this is a current and there is a magnetic field.
Assassinos said:
Also, does this happen if we have a material full of dielectric?
I don't understand what you are asking here. What material is full of dielectric?
 
  • Like
Likes vanhees71
Ibix said:
If there is charge in motion then this is a current and there is a magnetic field.

I don't understand what you are asking here. What material is full of dielectric?
Assume a sphere of radius R, and from 0 to R the sphere is filled with a dielectric of permittivity ε.
 
Is it charged and moving? If so, there's a current.
 
  • Like
Likes lelouch_v1
Assassinos said:
My assumption is that since we have an insulator, then the electrons are bound and there cannot be a current
A moving charge density is a current: ##\vec j = \rho \vec v##
 
  • Like
Likes vanhees71
One should add a comment to the question about the dielectric. That was a very hot question in the 19th century, where many physicists where very puzzled about the "electrodynamics of moving bodies", and it was indeed a question, what's the nature of polarization and if a moving polarized body would produce a magnetic field. This was investigated by Röntgen and Eichenwald, and confirmed that indeed a moving polarized dieelectric produces a magnetic field, which however only added on the puzzle about "electrodynamics of moving bodies".

The final solution of all these troubles was nothing less than Einstein's famous breakthrough paper in the Annalen der Physik titled modestly "On the electrodynamics of moving bodies" and lead to one of the "revolutions" in 20th-century physics, i.e., the (special) theory of relativity.
 
  • Like
  • Informative
Likes hutchphd, Delta2 and Ibix
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Back
Top