Does the Dot Product of Force and Position Hold Physical Significance?

sam guns
Messages
3
Reaction score
0
Reason I posted this in the maths help forum is that an equation of this form randomly popped up in a homework I was doing on differential geometry. I started with a one-form ω=dβ (β is a scalar function) and found that if for a random vector v, ω(v) = 0, then

\frac{d}{dt} \left( \gamma^{i}\frac{\partial\beta}{\partial x^{i}} \right) = 0

where γ is the integral curve of v (aka the position if you interpret v as a velocity)

If you interpret the scalar field β as a potential field, then this says that the dot product of position and force is a constant of motion. Understanding it is not really significant to what I am expected to turn in, but regardless, does it have any physical significance?

Homework Statement

 
Physics news on Phys.org
welcome to pf!

hi sam! welcome to pf! :smile:

it looks like the formula for a bead sliding along a frictionless rod forced to rotate (irregularly) about a pivot

but, so far as i know, it has no practical significance​
 


Thanks for your reply! It's kind of what I suspected, for a second I thought it could be some important constant of motion related to the virial theorem or something like that, but I couldn't find anything in my old mechanics textbooks. I guess it's just a curiosity then :)
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top