Does the Harmonic Oscillator Wave Function Change in Momentum Space?

frogjg2003
Messages
263
Reaction score
0

Homework Statement



I'm trying to prove that the Harmonic oscillator wave function doesn't change (except a phase factor) when I convert from position to momentum space.
\Phi_{nlm}(\vec p)=(-i)^{2n+l}\Psi_{nlm}(\vec p)

Homework Equations



\Phi_{nlm}(\vec p)=\frac{1}{(2\pi)^{3/2}}\int d^3r e^{-i \vec p\cdot\vec r}\Psi_{lmn}(\vec r)
\Psi_{nlm}(\vec r)=N_{nl} \alpha^{3/2} e^{-(\alpha r)^2/2} L^{l+\frac{1}{2}}_n((\alpha r)^2) R_{lm}(\alpha\vec r)
in natural units and α is in GeV. L_n^{l+\frac{1}{2}}(x^2) is the associated Laguerre polynomials, R_{lm}(\vec r)=\sqrt{\frac{4\pi}{2l+1}} r^lY_{lm}(\hat r) and Nnl is a normalization constant. I'm leaving α out of Nnl because I want to keep track of it for later calculations.
R_{lm}(\vec x+\vec a)=\sum_{\lambda=0}^l \sum_{\mu=-\lambda}^\lambda \sqrt{\binom{l+m}{\lambda+\mu}\binom{l-m}{\lambda-\mu}} R_{lm}(\vec x) R_{(l-\lambda) (m-\mu)}(\vec a)
R_{lm}(a\vec x)=a^lR_{lm}(\vec x)
All integrals are over all space, i.e.
\int d^3 r=\int_0^\infty dr \int_0^\pi r d\theta \int_0^{2\pi} r\sin{\theta} d\phi

The Attempt at a Solution



The end result should be \Phi_{lmn}(\vec p)=(-i)^{2n+l} N_{nl} \alpha^{-3/2} e^{-(p/\alpha)^2/2} L^{l+\frac{1}{2}}_n((\frac{p}{\alpha})^2) R_{lm}(\frac{\vec p}{\alpha})

I've managed to manipulate it into
\Phi_{nlm}=\frac{N_{nl}}{(2\pi\alpha)^{3/2}} e^{-q^2/2}\int d^3 x e^{-(\vec x+i \vec q)^2/2} L^{l+\frac{1}{2}}_n(x^2) R_{lm}(\vec x)
where x=\alpha r and q=\frac{p}{\alpha}. I want to further transform it to \vec y=\vec x-i\vec q and integrate over y.
I can't figure out if the differential volume element changes, i.e. if I can just write it as
\Phi_{nlm}=\frac{N_{nl}}{(2\pi\alpha)^{3/2}} e^{-q^2/2}\int d^3 y e^{-y^2/2} L^{l+\frac{1}{2}}_n((\vec y-i\vec q)^2) R_{lm}(\vec y-i\vec q)

Assuming I could, I continued and managed to get it into the relatively simple form of
\Phi_{nlm}=\frac{N_{nl}}{(2\pi\alpha)^{3/2}} e^{-q^2/2}\sum_{\lambda=0}^l\sum_{\mu=-\lambda}^\lambda \sqrt{\frac{4\pi}{2\lambda+1}\binom{l+m}{\lambda+\mu}\binom{l-m}{\lambda-\mu}} (-i)^l R_{(l-\lambda)(m-\mu)}\int d^3y e^{-y^2/2} L^{l+\frac{1}{2}}_n((\vec y-i\vec q)^2) y^\lambda Y_{\lambda\mu}(\hat y)

For n=0, L_n^{l+\frac{1}{2}}(x)=1, so it was trivial to show it was correct. For n=1, I can't get the cross term in y^2-2i\vec y\cdot \vec q-q^2 to disappear and it leaves \delta_{\lambda1} terms I can't seem to get rid of.
 
Physics news on Phys.org
I think that it's not necessary to play about with all the special functions to see this.

If you write out the time-independent Schrodinger equation in p-space, you'll find that it looks exactly the same as it does in x-space, with some annoying factors of m, \omega and \hbar shuffled around. So when you solve the energy eigenvalue problem in p-space, you're basically doing exactly the same math as you would be in x-space, and the answers will be of the same form.

It all comes about because of the x-p symmetry of the harmonic oscillator Hamiltonian. That Hamiltonian, roughly speaking, can't tell the difference between x and p.
 
True, but that's the undergrad method. I want to be able to transform wavefunctions that aren't the same in both spaces, and this would is a very good test case.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top