Felafel
- 170
- 0
Homework Statement
given
##A \subset \mathbb{R}##
##f:A \subset \mathbb{R} \to \mathbb{R}^+##
considering the function g such that:
##g(x):=\sqrt{f(x)} x \in A## with ##x_0## limit point in A.
Prove that if ##\displaystyle \lim_{x \to x_0} f(x)## exists, then ##\displaystyle \lim_{x \to x_0} g(x)=\sqrt{\displaystyle \lim_{x \to x_0} f(x)}##
The Attempt at a Solution
Being ## \displaystyle \lim_{x \to x_0}=L##
By definition of limit:
##\forall \epsilon>0 \exists \delta >0: \forall x: 0<|x-x_0|<\delta \Rightarrow |f(x)-L|<\epsilon##
Let: ##\epsilon=\epsilon |\sqrt{f(x)}+\sqrt L|##
##|f(x)-L|<\epsilon |\sqrt{f(x)}+\sqrt L| \Rightarrow |\frac{f(x)-L}{\sqrt{f(x)}+\sqrt L}|< \epsilon## ##\Rightarrow |\sqrt{f(x)}+\sqrt L}|<\epsilon##
is it sufficient? thank you in advance