maxitis
- 6
- 0
Sequence Convergence
\sum_{n=2}^\infty\frac{(-1)^n}{ln(n)}
I have tried some comparisons bot not conclude:
\sum_{n=2}^\infty\frac{(-1)^n}{ln(n)}<=\sum_{n=2}^\infty\frac{(-1)^n}{1}
\sum_{n=2}^\infty\frac{(-1)^n}{x-1}<=\sum_{n=2}^\infty\frac{(-1)^n}{ln(n)}
Somebody having any insights?
Thank you.
\sum_{n=2}^\infty\frac{(-1)^n}{ln(n)}
I have tried some comparisons bot not conclude:
\sum_{n=2}^\infty\frac{(-1)^n}{ln(n)}<=\sum_{n=2}^\infty\frac{(-1)^n}{1}
\sum_{n=2}^\infty\frac{(-1)^n}{x-1}<=\sum_{n=2}^\infty\frac{(-1)^n}{ln(n)}
Somebody having any insights?
Thank you.
Last edited: