Does the sum of this rational function diverge with the Limit Comparison Test?

  • Thread starter Thread starter Bachelier
  • Start date Start date
Bachelier
Messages
375
Reaction score
0
sum n/(n^2 + 2 sqrt(n) + 9), n=0 to infinity

How do I prove it diverges?
 
Physics news on Phys.org
Try using the Limit Comparison Test with the harmonic series. Whenever you get a rational function, LCT is a good way to start. And wrong section?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
3
Views
1K
Replies
6
Views
2K
Replies
4
Views
1K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Back
Top