Benplace said:
Can you explain this a little more, in more laymans terms?
The issue is Einstein's relativity in which there is no absolute time. Each observer carries with him/her their own senses of duration, e.g. the passage of time. The amount of time measured by an observer depends on their speed and direction relative to the event they are observing. It also depends on their vicinity to sources of gravity like black holes.
Some terminology: EVENT HORIZON: this is an "imaginary" boundary in the region around a black hole. It is imaginary in the sense that it is not made of anything (just spacetime), but it has real physical meaning. Anything crossing this cannot return. Think of it as a point of no return.
The maths works out as follows:
A distant observer watching someone crossing the event horizon will not see them crossing to the other side. Instead they'll seem them stop at the event horizon and stay there forever. As far as the distant observer is concerned it takes an infinite amount of time to cross an event horizon and therefore someone crossing will freeze there forever.
However for the in-falling observer his clock runs quite differently (remember he can also observe himself). In fact, an in-falling observer won't notice anything at all out of the ordinary when crossing an event horizon. He sail through.
This is not paradoxical it's just extreme relativity.
The centre of a black hole does not make sense in general relativity, it's a singularity and we can't say what is really there or what happens there with any kind of certainty. I don't think there really is a singularity inside the black hole, others might disagree.
Your idea of time stopping at the event horizon is not really wrong. A distant observer watching a flashing light approaching the event horizon will see the flashes becoming longer and longer until it reaches the event horizon where it will no longer flash, just stay lit or unlit depending if the light arrives on a flash or not. The distant observer might think that time has stopped for the flashing light. But if he knows something about relativity he'll probably know what's going on.